Deflated and Augmented Krylov Subspace Methods: A Framework for Deflated BiCG and Related Solvers
نویسنده
چکیده
We present an extension of the framework of Gaul et al. (SIAM J. Matrix Anal. Appl. 34, 495–518 (2013)) for deflated and augmented Krylov subspace methods satisfying a Galerkin condition to more general Petrov–Galerkin conditions. The main goal is to apply the framework to the biconjugate gradient method (BiCG) and some of its generalizations, including BiCGStab and IDR(s). For such applications the assumptions of Gaul et al. were too restrictive. Our abstract approach does not depend on particular recurrences and thus simplifies the derivation of theoretical results. It easily leads to a variety of realizations by specific algorithms. We do not go into algorithmic details, but we show that for every method there are two different approaches for extending it by augmentation and deflation: one that explicitly takes care of the augmentation space in every step, and one that applies the unchanged basic algorithm to a projected problem but requires a correction step at the end. The latter approach typically generates nested sequences of Krylov subspaces for a singular operator that is associated with the projected problem. The deflated BiCG method requires two such sequences, but it also allows us to solve two dual linear systems at the price of one, a property that does no longer hold for the closely related deflated biconjugate residual method (BiCR). Deflated Lanczos-type product methods fit in our new framework too. The question of how to extract the augmentation and deflation subspaces is not addressed here.
منابع مشابه
Spectral Deflation in Krylov Solvers: a Theory of Coordinate Space Based Methods
For the iterative solution of large sparse linear systems we develop a theory for a family of augmented and deflated Krylov space solvers that are coordinate based in the sense that the given problem is transformed into one that is formulated in terms of the coordinates with respect to the augmented bases of the Krylov subspaces. Except for the augmentation, the basis is as usual generated by a...
متن کاملA Framework for Deflated and Augmented Krylov Subspace Methods
We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) “removes” certain parts from the operator making it singular, while augmentation a...
متن کاملDeflated and Augmented Krylov Subspace Techniques
We present a general framework for a number of techniques based on projection methods onàugmented Krylov subspaces'. These methods include the deeated GM-RES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a signiicant improvement in convergence rate when compared with their standard counterparts using the...
متن کاملRecent computational developments in Krylov subspace methods for linear systems
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 35 شماره
صفحات -
تاریخ انتشار 2014